—Chapter 12—

Electromagnetic
Waves In Matter
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12-1 Maxwell's Equations in Matter

POLARIZATION CURRENT

Consider a surface § bounding a volume V of a nonpolar dielectric. The
application of an external field causes the bound charges: The positive
charges flow out of V and the negative charges remain within the
volume V.

The charge crosses the surface S is

dQp = Nqd - ida = P - fida
The net charge through the surface is

Qp = f P -fAda

S

NOTE:
The bound charge satisfies the charge conservation law: we started
with an electrically neutral dielectric body, the total charge of the body

after polarization must remain zero.
The net charge within the volume is

0p =—3§ﬁ-ﬁda=f (-v-P)dr and @, =fpbd‘r
s v S
Thus, we obtain

pPp=—V- P
The total charge is

o, -
Ubda+fpbdr=§——da—f V-P)dr
i v s da v( )

=5Eﬁ-ﬁda—5§ﬁ-ﬁda
S S
=0
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(2) The charge flows through the surface per unit time is
d
Ip— QP f_' nda and Ip—fjp da

Thus, we obtaln

. 9P
Jp = T polarization current
NOTE:
The polarization current satisfy the continuity equation:
ap, - O(-VP) _ op 0P _ P
e TVl E Ty Vg T Vg TV 70

B. MAXWELL'S EQUATIONS IN MATTER

(1) For fields in the presence of electric charge of density p and electric
current, that is, charge in motion, of density f . We have

-

- 0B
®=VXE= —a Faraday's law

. R oF
@ =Vx Iio]"‘.uofoa
®=V-§=—p— ----- Gauss's law
€o
@=V-B=

(2) The electric charge density can be separated into two parts

p=prtpp=pr—V-P
The current density can be separated into three parts

—

- - - - - — aP
J=Jstlpt]p=Jf +VXM+—
Gauss's law (equation @) can now be written as

v-ﬁ:—l—(p ~V-P)=V-(eE+P)=p; >V D=p;
e, \Pr f
Meanwhile equation @ becomes

VX B = <*+v><1\7+aﬁ>+ oF
= Uo ]f at .Uofoat

= x (B — o) = oy + oo (P + )
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. . 9D
=>V><H=]f+—a—

where D is called the electric displacement and fd = Z—lt) is called the

—

displacement current.

(3) Now Maxwell's equations, in terms of free charge and current, read

VX E = ——"-- Faraday's law

. . aD
VXH:]f-l'Ft'

V-D= Pr Gauss's law
For linear media, we have

P= eo)(ef and M = )(mﬁ
which gives that

C. BOUNDARY-VALUE PROBLEMS WITH DIELECTRICS

(1) Maxwell's equations in integral form are

R B
O=¢E -ds=— f —-dd ----- Faraday's law
s

@ fﬁ as=1+ 2. a
= . ds = —_ a
c YT
® = fﬁ dd = qg - Gauss's law
s

(2

where E ) B , D , and H will be discontinuous at a boundary between two
different media, or at a surface that carries a charge density o or a

current density K.

(2) We choose a Gaussian surface for a very tiny area dd and let the
thickness go to zero.
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D,
Thus, from equations @ and @, we obtain

fﬁ-dd):Bl-da—Bz-d(_1)=0'fda3D1J_—D2J_=O'f
S media @ media @
fﬁ'dd}=§1'dd)—§2'dc_i=0=>Bu_—BzJ_=0

S media @ media @

We can choose a closed loop such that the width goes to zero as
ik

Thus, we obtain

. ﬁ , aB
¢ media ®© media @ S

ffﬁ-ds?:ﬁl-ds?—ﬁz-ds?:q=1?f-(ﬁxd§)=(1?fxﬁ)-d§
¢ _)media 0]} media @

= Hyy — Hy = K X 71

For linear media, we have the boundary conditions:

€1E1, — €;,E,, = of

By, —B;; =0
Eyy—Ez =0
B B N
251 Uz
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12-2 Electromagnetic Waves in Matter

ELECTROMAGNETIC WAVES IN LINEAR MEDIA

Inside matter, but in regions where there is no free charge or free
current, Maxwell's equations become

. 9B
VXE = TR Faraday's law
VxH 9D
XH=—-
_ ot
V-D=0--- Gauss's law
V-B =

If the medium is linear and homogeneous, i.e.,

— - — 1—>
D=EEaHdH=;_1B

we have
., 0B
VXE = BT Faraday's law
VxB OF
X B = pe—
AT
V-E=0:--- Gauss's law
V-B=0

Thus, electromagnetic waves propagate through a linear homogeneous
medium at a speed v,

V2E = e o°E

at?

d%B

V2B = pe—
He 5tz

= ol

c
SV=—=—
UE n
where

ue
n= |[—
Uo€o

is the index of refraction of the substance. For most material,
Xm =0
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so, we have

Thus, we conclude that light travels more slowly through matter.

B. REFLECTION AND TRANSMISSION AT NORMAL
INCIDENCE

(1) Suppose the xy plane forms the boundary between two linear media. A
plane wave of frequency w, traveling in the z direction and polarized
in the x direction, approaches the interface from the left:

A
m 2) E;

E, O/ L
» }* v,
\] 2

B, \
v 4_1/ Interface

Ei(Z, t) = EOiei(k1Z—wt)5C\
§.(Z, t) = Eo.ei(k1Z—(ut) _1_ B x % = &ei(klz—mt)y
i i " -

It gives rise to a reflected wave and a transmitted wave,

E)T'(Zi t) = Eorei(_klz_wt)f
B.(2,6) = Eypeilaro0 L (L5 g = ~E0r piciaz-onyg

vy vy

Et(Z: t) = EOtei(kZZ—wt)jc\

- . 1 E .
Bt(Z, t) = EOtel(kzz—wt) — D, X% = ﬂel(kzz—wt)y\
%) Uy

(2) At z =0, the boundary conditions give
€161, —€E,, =0
By, —B;; =0
Eyy = Ey = 0= Eo; + Eor = Eo¢
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B. B 1 (Ey E 1E
22 g <Ol Or>=_£:E0i_E0r=ﬂEOt

251 U Uy
where
b Ui _ T
UV UV Ny
Thus, we obtain

1-5
Eor =175 Eoi
Ey = 2 E
ot 1 B 0i

(3) The reflection coefficient R and the transmission coefficient T

Since
1—1 EZ
—261)0
we have
2
_n
ol (Bor\ _(1=BY (1T _(ammeY
nq
2
T_It_ezv2<E0t>2_< 2 >2_ 2 _ 4mym,
Iy ev1 \Eo; 1+ 1+Z—i (n1+n2)2
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12-3 Electromagnetic Waves in Conductors

ELECTROMAGNETIC WAVES IN CONDUCTOR

Inside a conductor, according to Ohm's law, the (free) current density
in a conductor is proportional to the electric field,

j, = oF
Maxwell's equations for linear media is

., 0B
VX E = ——"-- Faraday's law

Jt .
X B = uoE + ueFt-
!

----- Gauss's law

\Y
V-
v-

ol T
o nl®

The continuity equation for free charge is

=d apf
V- — =0
It 5y
together with Ohm's law and Gauss's law, gives

- = o
2 = _ V.|, =-V.0F = ——
ot Iy d epf

= py(t) = e~/ p,(0)
Thus, any initial free charge pf(0) dissipates in a characteristic time
T=€/o.

As accumulated free charge disappears, from then on, pf = 0, we have
L, 0B
VXE = TR Faraday's law
VB = ok + e 2L
R Biad He ot
V-E=0--- Gauss's law
V-B=
Applying the curl, we obtain modified wave equations
Vx (VxE)=v(v-E)-vE = o(vxB)_  0E  OF
B B ot M

=0
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v><(v><§)=v(v-§)—v2§=ua(v><ﬁ)+ue

=0

= V2F = E)E+ 0°E
“Gat ”Eatz

v2F = aB+ 0%B
= ”aat “Eatz

Assume that
E(z,t) = Ege *2ellkz-0t)g

— k .
B(Z, t) — 5EOe—lczel(kz—out)j;

we found
k=k+ix
- 1/2
UE 0 \?
k=o = 1+(——) +1
2 EW
1/2

3 0 \?2
k=ols| [1+(2) -1
2 EW

1/2

1/2

Bo _ |kl _ 1+(_0_>2
o \F G

The electric and magnetic fields are

E(z,t) = Eje *Zellkz-wt)g
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E(z, t) = |£| Eoe_"zei(kz_“’H‘i’)j}
1)
where 1/k is called the skin depth.

B. REFLECTION AT CONDUCTING SURFACE

(1) Suppose the xy plane forms the boundary between two linear media. A
plane wave of frequency w, traveling in the z direction and polarized
in the x direction, approaches the interface from the left:

A
@ 5)  E

L

B,

Eg
B, \
v <_T/( Interface

Ei(z; t) = EOiei(k1Z—wt)5C~
E)'(Z, t) = @E ei(klz_wt)j}
i s

It gives rise to a reflected wave and a transmitted wave,
E.(z,t) = Eypelthaz-ot)2

- E
B (Z t) — __v_et( kiz— wt)y
1

Et(Z t) = tel(kzz wt) g
k,
B(z,t) = Z)—Eoztel(kzz_wt)y

(2) At z =0, the boundary conditions give
€1E1, — 6;E,, = of

By, —B;, =0
gul - gzu =0

1ﬂ - —2_" I?f X Tl
U 12%)

Since E; = 0 on both sides, it gives o = 0. B; =0

Assume I_{} = 0, we have
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Eyy—Ey =0= Ey; + Eor = Eot

B, B 1 (Ey; E k, E
Bu _Ba_, :__<_05_£> _feBor b
M 2 H\V1 M Uy W
where
- WV -
="tk
U2V3
Thus, we obtain
1-p
E,, =——=E
or 1+ B 0i
E 2 E
ot 1+ﬁ~ 0i
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